Kinematics of transition during human accelerated sprinting

نویسندگان

  • Ryu Nagahara
  • Takeo Matsubayashi
  • Akifumi Matsuo
  • Koji Zushi
چکیده

This study investigated kinematics of human accelerated sprinting through 50 m and examined whether there is transition and changes in acceleration strategies during the entire acceleration phase. Twelve male sprinters performed a 60-m sprint, during which step-to-step kinematics were captured using 60 infrared cameras. To detect the transition during the acceleration phase, the mean height of the whole-body centre of gravity (CG) during the support phase was adopted as a measure. Detection methods found two transitions during the entire acceleration phase of maximal sprinting, and the acceleration phase could thus be divided into initial, middle, and final sections. Discriminable kinematic changes were found when the sprinters crossed the detected first transition-the foot contacting the ground in front of the CG, the knee-joint starting to flex during the support phase, terminating an increase in step frequency-and second transition-the termination of changes in body postures and the start of a slight decrease in the intensity of hip-joint movements, thus validating the employed methods. In each acceleration section, different contributions of lower-extremity segments to increase in the CG forward velocity-thigh and shank for the initial section, thigh, shank, and foot for the middle section, shank and foot for the final section-were verified, establishing different acceleration strategies during the entire acceleration phase. In conclusion, there are presumably two transitions during human maximal accelerated sprinting that divide the entire acceleration phase into three sections, and different acceleration strategies represented by the contributions of the segments for running speed are employed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Measurement procedures affect the interpretation of metatarsophalangeal joint function during accelerated sprinting.

The metatarsophalangeal joint (MPJ) is a significant absorber of energy in sprinting. This study examined the influence of MPJ axis choice and filter cut-off frequency on kinetic variables describing MPJ function during accelerated sprinting. Eight trained sprinters performed maximal sprints along a runway. Three-dimensional high-speed (1000 Hz) kinematic and kinetic data were collected at the ...

متن کامل

How Joint Torques Affect Hamstring Injury Risk in Sprinting Swing–Stance Transition

PURPOSE The potential mechanisms of hamstring strain injuries in athletes are not well understood. The study, therefore, was aimed at understanding hamstring mechanics by studying loading conditions during maximum-effort overground sprinting. METHODS Three-dimensional kinematics and ground reaction force data were collected from eight elite male sprinters sprinting at their maximum effort. Ma...

متن کامل

Sprinting at Maximum Velocity

Resisted sprint running is a common training method for improving sprint-specific strength. For maximum specificity of training, the athlete’s movement patterns during the training exercise should closely resemble those used when performing the sport. The purpose of this study was to compare the kinematics of sprinting at maximum velocity to the kinematics of sprinting when using three of types...

متن کامل

On the Existence of Step-To-Step Breakpoint Transitions in Accelerated Sprinting

Accelerated running is characterised by a continuous change of kinematics from one step to the next. It has been argued that breakpoints in the step-to-step transitions may occur, and that these breakpoints are an essential characteristic of dynamics during accelerated running. We examined this notion by comparing a continuous exponential curve fit (indicating continuity, i.e., smooth transitio...

متن کامل

Scapula behavior associates with fast sprinting in first accelerated running

The arm-swing motion is important for coordinated lower limb movement during a fast sprint and is composed of three-dimensional scapulothoracic and glenohumeral joint motion. Here, we aimed to clarify the role of the scapula during the initiation of a sprint running when sprinter run with high horizontal acceleration. Ten sports-active students participated in four 5-m dashes, with scapular con...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2014